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We study inhomogeneous one-dimensional Hubbard systems using the density-matrix renormalization-group
method �DMRG�. Different heterostructures are investigated whose configuration is modeled varying param-
eters such as the on-site Coulomb potential and introducing local confining potentials. We investigate their
Luttinger liquid properties through the parameter K�, which characterizes the decay of the density-density
correlation function at large distances. Our main goal is the investigation of possible realization of engineered
materials and the ability to manipulate physical properties by choosing an appropriate spatial and/or chemical
modulation.
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I. INTRODUCTION

A key aspect of materials research is to find parameters to
tune the physical characteristics of the system such as con-
ductivity and other desired properties. In the last decades
there has been enormous progress in the generation of
nanoscopic quasi-one-dimensional systems, e.g., carbon
nanotubes,1,2 semiconducting quantum wires,3,4 and organic
molecules,5 as well as an intense study of their transport
properties6–8 such as superconductivity9 and quantum Hall
edge states.10,11 While the properties of homogeneous one-
dimensional systems �even with disorder� are relatively well
understood, very little is known about the properties of
strongly interacting inhomogeneous systems. Despite of the
large effort in the study of heterostructures and quantum
dots,12–16 there are still open questions which become rel-
evant in modeling the transport through molecules, where the
electrons interact strongly due to the reduced dimension. In
addition, its chemistry induces potential barriers which alter
the transport properties drastically. Technically it is very im-
portant to know how to control the transport and equilibrium
properties. In this paper we present a detailed investigation
of correlation effects in an inhomogeneous one-dimensional
system including potential barriers.

The strong electron correlations, inherent to the low-
dimensional structure, and the large quantum fluctuations in-
duce new and interesting quantum phases. The relevant de-
grees of freedom are no longer the single-particle electronic
states but the collective spin and charge-density waves. The
low-energy electronic single-particle excitations possess van-
ishing spectral weight at the Fermi surface. The physics of
such systems, in the homogeneous low-energy regime, is
well described by the Tomonaga-Luttinger liquid �TLL�
model17,18 introduced by Haldane.19 Within this model, it is
found that all correlation functions exhibit a power-law de-
cay with the distance, which is specified only by the param-
eter K�, known as the Tomonaga-Luttinger �TL� parameter.

For inhomogeneous structures the high-energy physics is
determined by the underlying chemistry which, in the atomic
scale, introduces Coulomb correlations and local potentials.
On the other hand, at large length scales, the physics has to
be described by the TLL model. In order to establish a con-
nection between the low-energy TLL and the quasi-one-

dimensional systems synthesized in the laboratory, we inves-
tigate the density-density correlation functions in the
asymptotic region �i.e., for well separated positions x and x��.
Position dependent on-site Coulomb interaction U�x� and a
local potential V�x� are used to model the changes in the
local chemistry of the heterostructures. This defines regions
which, for slowly varying potentials, can be separately con-
sidered as homogeneous. We wish to study how the TL pa-
rameter changes close to the crossover regions. We expect to
find a description of it in terms of U�x� and the local density
n�x�.

The paper is organized as follows: In Sec. II the compo-
sition of the investigated heterostructures is described and
we plot our expectations in terms of the coupling parameters.
In Sec. III we briefly recall the approximate results in the
low-energy regime for correlation functions in the homoge-
neous case, and we describe the numerical procedure, the
DMRG method, used to study the one-dimensional hetero-
structures. The results are presented and discussed in Sec. IV.
Finally we state our conclusions.

II. HUBBARD HETEROSTRUCTURES

The Hubbard heterostructures we investigate are chains
with a length of L sites and on-site Coulomb interaction U,
which switches between two different values. In our case it
can be visualized as a valley around the middle of the chain
with sharp edges at the sites labeled xL and xR. We will refer
to this system as heterostructure I. We expect that the slight
discontinuity in the charge distribution, caused by this form
of interaction, will not strongly affect the correlation be-
tween the adjacent regions and will make it possible to find a
TLL behavior, even in the region after the change in the U
interaction. On a second heterostructure �called from here on
heterostructure II�, in addition to the Coulomb interaction
described, two potential walls are introduced through the
confining potential V��U�. Because of the sharp discontinu-
ity in the charge distribution, we do not expect to find a TLL
extending beyond the point of the scattering potential, how-
ever, it might still be possible to approximate the TLL in the
different subchains, since in each of them we expect to find a
homogeneous particle distribution. Figure 1 shows the layout
of the heterostructures.
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Our starting point is an inhomogeneous form of the Hub-
bard Hamiltonian:

H = − t�
i,�

ci,�
† ci+1,� + �

i

Uini↑ni↓ + �
i,�

Vini�, �1�

where ci,�
† �ci,�� is the creation �annihilation� operator with

spin � �=↑ ,↓� on the site i and ni�=ci,�
† ci,� is the electron

number operator. t=1 is the nearest-neighbor hopping ma-
trix, which we choose to set the energy scale. Hamiltonian
�1� incorporates the different systems we want to study and
will allow us to find out if such systems resemble a TLL and,
in that case, also to determine the K� parameter from the
density-density correlation function.

The sites xL and xR divide the whole system into three
homogeneous subchains UL ,UC and UR, raising two ques-
tions: first, how the charge correlation function behaves in
the whole system and second, whether the known results for
the homogeneous regime can be recovered within the sub-
chains.

III. APPROXIMATE DESCRIPTION OF ONE-
DIMENSIONAL SYSTEMS IN THE LOW-LYING ENERGY

SECTOR

The low-lying energy, long-distance physics of one-
dimensional fermionic systems is described by bosonic col-
lective excitations. This bosonization technique yields an ex-
act solution for the TL model, whose complete description
depends solely on the charge and spin velocities and the TL
parameter K�. In the first part of this section we will briefly
recall the known results20,21 for the density correlation func-
tion in the case of homogeneous systems, and in the second
part we will explain in detail the numerical method used to
measure the correlation functions in the inhomogeneous sys-
tems.

A. Homogeneous regime

In a homogeneous TLL, K� determines the long-distance
decay behavior of all the correlation functions. In the ab-
sence of external magnetic field or spin anisotropic interac-
tions, the charge correlation function is given by

�n�x�n�0�� =
K�

��x�2 +
A1cos�2kFx�

x1+K�
ln�x�−3/2 +

A2cos�4kFx�
x−4K�

+ ¯ . �2�

Even though the constant coefficients A1 ,A2, and B1 depend
on the model, the algebraic decay is characterized only by
K�. Of special physical interest are the charge-density waves
with wave vectors 2kF and 4kF. While the 2kF mode domi-

nates over the 4kF for K��
1
3 , for sufficiently large values of

the on-site Coulomb interaction U, the 4kF charge mode
dominates over the 2kF mode.

As a test for our numerics, we considered the case of a
homogeneous chain for which we confirmed the results ob-
tained from the Bethe Ansatz20,22 for the correlation func-
tions. In Fig. 2 we show our results for several values of U
obtained with a homogeneous chain of length L=240 sites.
We will use this form of the density correlation function to
analyze the low-energy behavior of the Hubbard heterostruc-
tures.

B. Inhomogeneous regime

1. Numerical study

The measurement of observables, which include ground-
state energies and correlation functions, is carried out using
the density-matrix renormalization group �DMRG�,23–25 a
method whose roots go back to the numerical renormaliza-
tion group formulated by Wilson.26 The DMRG is an effi-
cient numerical method developed to overcome the intrinsic
difficulties of low-dimensional strongly interacting systems.

The DMRG provides two algorithms to handle an other-
wise exponentially-increasing Hilbert space of a many-body
system. Both implementations, finite-size and infinite-size
DMRG base, as in Wilson’s renormalization group, on a
blocking treatment of a lattice system in real-space, whose
basis of the corresponding Hilbert space is decimated under a
certain criterion. In the renormalization-group procedure, the
decimation of the system’s basis is done by selecting m states
with the lowest energy eigenvalues to obtain the ground state
of a system. This proved to be a reliable method to solve
systems, such as the Kondo problem, for which the coupling
between successive sites decreases exponentially. Thus, it
was plausible to ignore the connections between neighboring
blocks, setting to 0 the wave function at the sites outside of
the block of interest. This leads to inaccuracies when study-
ing systems such as the Hubbard model, where there is no
intrinsic separation of the energy scales. To solve this, White
proposed other criteria to handle both the boundary condi-
tions when adding a new site to the system as well as the
selection of states to best represent it.

FIG. 1. �Color online� General arrangement of a Hubbard het-
erostructure. The measurements for �n�x�n�x0�� were carried out
from the middle point x0=120.

•

•

•
••

•

•

•

•
•

•

•

•

•
•

•

•

•

•
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•
•

•

•

•

•
•

Bethe Ansatz

DMRG •

FIG. 2. Tomonaga-Luttinger parameter values for the Hubbard
lattice compared to our numerical evaluation of K� �dots�. U
=1.0,2.0,4.0,8.0,16.0 from top to bottom.
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The DMRG method considers the system to be connected
to a bath, which is a second block, forming in total a super-
block. The interactions between the system and the bath set
the boundary conditions at the edge sites of the system as if
it would be part of a larger system. In this way, the procedure
becomes more accurate as the system gets larger. The wave
function in the superblock has the form ���=�i,j�ij�i� � �j�,
where i are the states on the system and j are those on the
bath. From this, the reduced density-matrix of the system is
�ii�=� j�ij�i�j. The crucial point is that the density matrix
contains all the information needed to calculate any property
of the system and so, the state of the system can be optimally
represented by keeping the m most probable states given
from the density matrix of the system.

We use the finite-size DMRG algorithm. This consist of
the following steps: After growing our system up to a fixed
size L, by means of the infinite-size DMRG, the basis of this
final system is optimized to best represent the desired target
state, such as the ground state, by sweeping through the sys-
tem repeatedly. A sweep over the system is an iterative pro-
cess which starts with a small block on the right extreme of
the chain. This is grown to in the left direction by adding a
site to the right block and connecting it to a bath or environ-
ment on the left side. The environment information was col-
lected from the infinite-size algorithm. The total size of the
system is always kept constant. As soon as the decreasing
size of the left block reaches a single site the procedure is
stopped. We save the information of the right blocks and can
use it now to start a similar procedure with a block on the left
side of the chain being grown in the right direction. This
procedure is repeated until convergence is reached.

With each step, the chain grows one site in the current
direction, and the basis of the new system must be truncated
to keep the Hilbert space manageable. All the necessary op-
erators are transformed and stored every time this happens.
With every step, the choice of states in the truncation of the
basis becomes a better representation of the system. This
leads to an optimal truncated basis for representing the target
state on the finite system. After convergence was reached, we
can proceed to measure other observables.

The numerical error caused by truncation of the original
basis can be measured through the weight of the states that
were discarded in a DMRG step. Our systems, with L=240
sites under open boundary conditions, were investigated
keeping m=256 density-matrix states, rendering a maximum
truncation error of approximately 10−6.

2. Density-density correlation function

An operator A, acting either on the left or on the right
block, can be written in the basis of the specific block as
���A���. In the case of correlation functions such as
���AB���, handling operators requires some extra attention.
The operators A and B can operate either on equal or on
different blocks. The last case may lead to errors in the cal-
culation of the expectation value of the product AB, since
each operator is separately written in its corresponding basis.
The way to proceed is to build the exact operator C=AB, in
a full basis from the beginning and transform it as is done for
the rest of the operators.

We calculated the TL parameter K� by measuring the
correlation function between the sites x and x0: Cx
= �n�x�n�x0��− �n�x���n�x0��, where the static expectation val-
ues were subtracted. To reduce the effect of the local density
oscillations, we take the average over pairs of correlation
functions for neighboring sites calculating C�r�= �Cx
+Cx+1� /2, with r= �x−x0� and x0 in the middle point of the
chain. Due to the symmetry of the problem we can, in prin-
ciple, choose either branch of the system to estimate K�.

IV. RESULTS

Using systems with open boundary conditions, finite-size
effects are induced. Examples of these effects are the local-
density oscillations and the charge accumulation close to the
edges of the system, shown in Fig. 3. The charge distribution
is expected to be symmetric around the middle of the chain.
We observe, however, that the symmetry is slightly per-
turbed, as seen in Fig. 3, at the positions where the Coulomb
potential switches values. For our purposes, such small
changes are negligible, specially after taking the average
over pairs of correlation functions, as explained in Sec. III. It
is still observed that the charge density remains fairly homo-
geneous in the valley of the Coulomb interaction.

To estimate K�, we fit the values of the numerical data to
the first two terms of Eq. �2�. An example of the results is
shown in Fig. 4. We will see below that, even though the 2kF
oscillations could not be fitted in all the cases, the power-law
decay was easily observed. We will refer to the region from
the middle of the chain up to the boundary �at the site xR� of
the Coulomb valley as the region R1, and from this point
until the end of the chain as the region R2. In the following
we describe in detail the results for each heterostructure.

A. Density-density correlation functions
for heterostructure I

As a first structure we take a slightly inhomogeneous
Hubbard lattice setting UL=UR=1.1 and UC=0.9 with V�x�
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FIG. 3. �Color online� Density profile �n�x�� for heterostructure
I, where the on-site Coulomb potential �bottom line on the graph
with scale on the right� is UL=UR=1.1 and UC=0.9. V�x�=0.0 for
all sites. The band filling is n=0.5.

STUDY OF THE CHARGE CORRELATION FUNCTION IN… PHYSICAL REVIEW B 78, 115425 �2008�

115425-3



=0.0 for all sites. The valley in the on-site Coulomb repul-
sion has sharp edges at the sites xL and xR, as shown in the
Fig. 3. This, however, and as seen from the full line in both
Figs. 5 and 6, does not alter significantly the continuous
decay of the correlation function. For band fillings, 0.1�n
	1.0, the power-law decay extends beyond the boundary
point and is not completely constrained to any of the regions
R1 or R2. In Fig. 7 the values for the TL parameter are shown
as a function of the band filling. We observe that K�	1.0,
which indicates that spin or charge-density waves are
present. The 2kF oscillations can be also observed in the
graphs and a closer view is presented in Fig. 4. A fitting of
the 2kF oscillations succeeded over the whole system only
for n�0.5. In the case of n
0.5, the fitting of the data was
only successful at large distances. This behavior is reflected
on the values of K�, as we observe in Fig. 7 the two different
values sets for the density intervals already mentioned. With
this we confirmed the power-law decay of the correlation

functions since it was possible to determine K� also includ-
ing the first logarithmic correction.

We compared the results with a similar configuration, this
time with an interaction of the form U�x�=cos��x�, with � a
constant. The valley around the center of the system remains
but the transition on the potential toward the ends is done in
a smoother way. This variation of U resulted in the same
values for the correlation functions as already presented,
showing that the sharp edges of the on-site potential did not
influence strongly the Luttinger liquid behavior of the sys-
tem. Another possible configuration that we studied was a
less symmetric one, with xL=70 and xR=156. For this ar-
rangement we found the density-density correlations behav-
ior to be qualitatively the same as for the original arrange-
ment, including the marked decrease in the value of the K�

for n
0.5.
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FIG. 4. �Color online� Density-density correlation function for
heterostructure I with n=0.5. The crosses show the numerical data
and the solid line the fitting done with the data including the term
A1 cos�2kFx�x−�1+K��ln�x�−3/2. In this case K�=0.838.
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FIG. 5. �Color online� Density-density correlation function for
heterostructure I �continuous line� and II �broken line�. In the first
case we found K�=0.864, with n=0.2.
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FIG. 6. �Color online� Density-density correlation function for
heterostructures I �continuous line� and II �broken line�. In the first
case we found K�=0.838, with n=0.5.
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FIG. 7. �Color online� TL parameter K� for both heterostructures
as a function of the band filling as compared to the results for the
homogeneous system with U=1.0. For heterostructure I K�	1.0,
indicating a Luttinger liquid behavior.
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B. Density-density correlation functions for heterostructure II

In this case we keep the valley in the Coulomb interaction
of the former case: UL=UR=1.1 and UC=0.9. Furthermore
we simulate two potential walls by introducing the confining
potential VxL

=VxR
=V and V�x�=0.0 for the rest of the sites.

The results in the case of the heterostructure II distinguished
strongly from those previously described. We studied the
system with V=0.5, 1.0, 3.0, 10.0, and 20.0, and found out
that the introduction of the confining potential V�xL� and
V�xR� generated stronger changes from one region to the
other for V
3.0, killing the oscillations beyond the extremes
at xL and xR. In Fig. 8, close to the potential wall, we see that
for V=1.0 there is apparently little influence on the correla-
tion function decay. This we could confirm only for the band
fillings n=0.3–0.6. For n=0.3–0.5 even the 2kF oscillations
could be fitted, giving values of K� similar to those in the
case of the heterostructure I; see Fig. 7. For n=0.6 only the
power-law decay was observed, with a clearly smaller value
of K�, as was seen also in the former heterostructure. On the
other hand, and as shown in Figs. 5 and 6 with the broken
line, the decay of the correlation function when V�3.0 is
abruptly interrupted by the scattering potential, not having

further space to fully establish the decay in the amplitude of
the 2kF oscillations.

In general, we see that for n=0.3–0.5 in the three sys-
tems: the homogeneous one, with U=1.0; the heterostructure
I, with U�1.0; and the heterostructure II, where the poten-
tial wall has a height V=1.0, the density-density correlation
function showed a similar behavior, which reflected in the
values, also similar, of K�; see Fig. 7.

V. CONCLUSIONS

In this paper we have investigated the behavior of density
correlation functions in one-dimensional heterostructures.
We described how junctions between different types of at-
oms influence the variation in space of the TL parameter. The
heterostructures as defined can be seen as unions of subunits
with different coupling constants in which the TLL for ho-
mogeneous systems is to be expected. However, our findings
show that a slow variation of the on-site Coulomb potential,
as in the first case, does not interrupt nor split the decay of
the density-density correlation functions between the regions
and the system as a whole behaves as a TLL. Similar systems
were investigated16 where the on-site Coulomb potential was
turned on and off over the subchains. For such systems an
effective exponent, K�

�= f�K1,� ,K2,��, was calculated consid-
ering, for example, two subchains which were assumed as
independent, homogeneous TLL’s. Using DMRG, their re-
ported values could only be partially reproduced, namely for
densities n	0.6.

We have also found a completely different behavior re-
sulting from the introduction of a scattering potential V at the
junctions between the subunits, as done for the systems in
the second case. Our findings in such case show that the TLL
is not a universal feature for one-dimensional systems for V
above some threshold value. Concerning the dynamics in
heterostructures, further work remains to be done. Transport
properties at temperatures different from zero are a key in the
construction of properly tunable electronic devices.
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